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under Horizontal Loads 
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ABSTRACT 

Very often the horizontal resistance of an historical masonry building is incremented by using steel 
tie bars passing in the walls at the floor level. 

In previous works the results for the cases of the walls with thin platbands or small `panels" have 
been presented. This paper presents a method and some results for the case in which the masonry panels 
between two piers are "deep". 

1. INTRODUCTION 

For a considerable number of masonry monumental buildings the main resistant structure is 
composed by a double array of orthogonal walls. Very often the walls of this regular pattern are not well 
connected each other, because the weak wooden floor does not allow the effective linking needed in 
presence of horizontal actions. In this case the "box effect" is guarantied by the steel tie bars passing at 
the floor level all along the walls.These tie bars, behind the control of the out-of-plane collapse for the 
walls, give a remarkable increment to the seismic resistance of each wall. 

The first static effect is indeed on the prevention of an anticipated collapse of the weakest masonry 
piers, before all the wall were engaged with its total resistance. The steel ties allow the transferring of the 
horizontal loads to the strongest piers because the steel gives to the horizontal connections a traction 
resistance, missing in the platbands or in the masonry panels. 

It has been already studied a mechanical model for the horizontal masonry connections consisting in 
simple monodimensional platbands (Abruzzese et al., 1992). This model has been used in order to show 
the collapse behaviour of the structure subjected to vertical fixed loads and horizontal gradually 
increasing loads. The study has been carried out in the framework of the limit analysis applied to the 
masonry structure (Heyman,1966) and then the piers and the platbands have been considered as a rigid, 
tensionless material, and the steel ties as elastic material, sustaining only traction. The study gave a simple 
algorithm to calculate the collapse multiplier and the stress in the ties, usually in the elastic limits. 

A development of these studies has been the extension of the previous analysis to the cases in which 
the horizontal masonry connections, over the openings, are bidimensional masonry panels of rigid, 
tensionless material. This new model shows that steel ties, in the presence of the bidimensional 
connections, produce a different kinematic mechanism with two effects, new fractures in the piers and 
plasticity in the steel, with a remarkable increment of the collapse multiplier. 
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A first tentative to develop a simple algorithm for the calculus of the collapse multiplier has been 
presented by Abruzzese et al.(1992), where the panels has been considered 'harrow", more similar to a 
beam from the geometric point of view. In that hypothesis the collapse multiplier for the wall without tie 
bars depends only on the geometry of the pier and not on that one of the panels. In this paper then we 
study the case of the 'deep" panel, for which the collapse multiplier even for the case without tie bars 
depends strongly on the geometry of the panels. 

2. PRELIMINARY ANALYSIS OF AN ELEMENTARY SCHEME 

Let start with the study of the elementary scheme of a wall as shown in fig. 1, where G represent 
the total dead loads of the piers and ?.G are the resultants forces due to the seismic horizontal action. 

I G
tie bar 

panel 

pier 

b I b 

fig. 1 

The collapse mechanism related with the geometric characteristics of the piers and panel can be that 
one shown in fig. 2a or in fig.2b. In the first case we call the panel 'harrow", while in the second case we 
call the panel `deep". In both cases, because the reasons already discussed by Abruzzese et al. (1994), the 
tie bar yields and the total resistance of the system to the horizontal actions is due besides the uplifting of 
the weights G even to the plastic work performed by the yielding load T.. 

  

H 
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fig.2a fig.2b 

In order to assess if the structure behaviour is type a or b, we refer to the fig. 3a that shows, in 
the case of the 'harrow" panel, the positions of the absolute and relatives centers Ci and C. Let us point 
out the fact that if the center C3 is on the upper part respect to the relative center C13, a clockwise 
rotation of the pier 1 occurs, compatible with the position of the center C1. It is clear that as the height h 
of the panel rises, the center C3 goes down over the center C13. When this happens it easy to verify that 
the rotation of the pier 1 becomes counter-clockwise and then anymore compatible with the position of 
the center C1. In this case the panel can be called `deep'; and the position of the centers Ci and is that 
one shown in the fig. 3b, where it is possible to recognize that the distribution of the rotations of the 

634 



piers and panel is compatible with the non-compenetration condition. In conclusion it is possible state that 
in the simple scheme of fig.1 the panel is defined "deep" if 

h>h*=H
1+6 

1 

otherwise it is defined "narrow". 
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fig. 3a 

 

fig. 3b 

The calculus of the collapse multiplier xf, can be performed by using the virtual work principle. In 
fact equalizing the active work of the horizontal thrusts to the resistant work developed from the weights 
and from the tensile stress in the tie bar, it is possible to obtain the equation leading to the collapse 
multiplier A. 

The simple examination of the horizontal displacements shown in fig. 3 allows us to express the 
values of the uplifting V of the weights G, of the horizontal displacement U of the thrusts XG and of the 
elongation A of the tie bar as a function of an unique kinematic parameter . That has been done in a 
previous work in the case of the 'harrow" panel, and the method has given an expression quite simple of 
the collapse multiplier A. 

In the case of the "deep" panel, on the other hand, the expressions of the values V,U, A as a 
function of an unique kinematic parameter can be obtained in a slightly different way, in order to give 
useful results for the analysis of structural schemes more complex than that one shown in fig. 1. 

Let us assume the rotation (pi  of the pier 1, positive if clockwise, as kinematic parameter. The 
displacements U1  and V1  (horizontal and vertical), related with the thrust and the weight acting on pier 1, 
can be expressed easily as: 

= 91 H; = - cp, b/2 (2) 

Moreover it is easy to calculate the displacements uc  and vc  of the point C belonging to the pier 
1 and to the panel (point c13 in the fig. 3b): 

= (pi H; vc = - (pi b (3) 

It is now possible to calculate from the displacements uc  and vc  the displacement of any other 
point in the panel and in the pier 2. Let us then consider the scheme in fig.4, showing two masonry blocks 
1 and 2 connected through the hinge B while the block 2 is connected to the ground with the hinge A. 
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yD  = H f (p,13,v). = H 4 

p=h/H f3=l / b 

(4)  
where: 

(5)  = tiC 

fig.5 fig. 4 

Y 

I uc  
U c  

The point C belonging to the block 1, because the kinematics, moves horizontally and vertically, with 
displacement components uc  and vc. 

The point D, center of the absolute rotation for the block 1, is characterized by the coordinate yD, 
which, after few calculations, can be expressed in the following form: 

The analysis of the horizontal displacements shown in fig.4 allows us to calculate in an easy way the 
rotations o) and y of the two blocks: 

= uc  / H r(p,t). = uc  / H q (6) 

y=- uc  /H f"(p4).= -uc  /H k (7) 

The (7), applied to the scheme in fig.3b, taking into account the (3), allows to evaluate the 
displacements U2  and V2  of the thrust ?.G and of the weight G corresponding to the pier 2: 

U2 = 92H=“pikH.; V2  = b/2 = - 91  k b/2 (8) 

while the tie bar elongation A is: 

A = U2  - = - 91 H (k+1) (9) 

The collapse multiplier ko, after few calculations, can be written in the following way: 

k +1 (
2

b 
4- ) k-1 H 

(10) 

The (10) shows the increment of the collapse multiplier due to the presence of the tie bar and lights 
up the increment that, without tie bar, the collapse multiplier A0 presents as effect of the `Beep" panel, 
compared with the value b/2H that we have with the "narrow" panel. 
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Moreover it is interesting to observe that if the dimension h of the panel becomes smaller, close to 
the limit value h*, given in (1), that distinguish the teep" panel from the 'barrow" one, the k factor 
defined in the (7), representing the ratio between the rotations P2 and (pi: 

k = l(p21/ Iwil (11)  

tends to infinity and then the collapse multiplier X, tends to the value within the commas in the (10), 
characteristic for the "narrow" panel schemes, as reported in a previous work. 

On the other hand, if the dimension `h" rises, becoming equal to the limit value H, the factor k 
tends to 1 and the collapse multiplier X , given from the (10), tends to infinity, being anymore statically 
admissible. In other words it should exist a limit dimension h** of the panel beyond which the collapse 
mechanism is that shown in fig.5 and the collapse multiplier X  is: 

2b +1 

— 2H 
(12)  

3. THE MULTIPIER WALL 

Let us now study the structural scheme in fig.6 in which more than two piers are present. On the 
basis of the considerations and results described in 2. it is possible to conclude that if the condition (1) is 
true then the collapse mechanism can be only that one shown in fig.7. 

It is interesting to observe that in the two piers scheme the blocks acting in the mechanism 
correspond to those elements called piers and panels. On the contrary, in the multipier scheme only the 
piers at the extremities and the last panel on the right side are blocks of the mechanism, while any other 
pier breaks and splits in two parts and together with the panel on the left side becomes a whole block. 

b 1 0 

fig. 6 fig. 7 

The mechanism shown in fig.7 can be considered as a sequence from left to right of kinematic 
schemes as that one shown in fig.4. In other words, since the rotation 9 of the first pier on the left is 
assigned, it is possible to calculate the rotations of all the elements involved in the mechanism: in fact we 
can analyze any other scheme using the results obtained from the previous scheme on the left side. 

Going in the details, if the N kinematic schemes are numbered from left to right, the rotation y, of 
the lower part of the pier and the rotation co; of the block composed by the upper part of the pier with 
the next left panel, are similar to the (6) and (7): 

k  
H 

(13) 
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The displacements ua and va  that appear in the (13) can be calculated as function of the rotations 
(ow and 11_1 of the previous scheme: 

uci = ; va  = yi-i b- (14) 

After the calculation of the rotations co;  and yi  for i=1,...,N it can be state: 

= (Po cl*i ; = - 90 k*; (15) 

and then we can to calculate the horizontal displacements U1  of the thrusts for i=0,....,N, the uplifting 
Vi of the weights for i=0,....,N and the elongation A of the tie bar: 

U0=90  H ; Ui = (Po H for i=1,...,N-1; UN= -q H k*N (16) 

V.= -90b/2; V; = -90(q*; b/2 + k*; b) for i=1,...,N; VN= -(Pok*N b/2 (17) 

A = - 90 H (k*N +1) (18) 

Then, by applying the virtual principle work, the collapse multiplier 7k.0  can be obtained: 

N-I 

b
lc.N  +1+ Eq, +2k, T +1  0 N 

= 2H lc; — N
+ . 

G —1 
(19) 

--,... 

0 

c, —4.. c,  

fig.8 

From the fig.8, in which are drawn the absolute and relative center positions of the kinematics and 
the rotations 90  , co; , , it is possible to observe that: 

k*N  >>> 1 

and then the (19) can be written in a simpler way: 

t(q:+ 201 T  
(

.

1+ k; j+ 
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4. THE MULTISTOREY WALL WITH A REGULAR ARRAY OF OPENINGS 

Let us now study the structural scheme of a multistorey wall shown in fig.9. With the hypothesis of 
`Beep" panels at each floor, the collapse mechanism is that one shown in fig.10. It is interesting to note 
that while at the first floor all 'inner" piers split in two parts (see prg. 3), at the upper levels this happens 
only partially. Indeed, if we call with index 0 the tuter" left pier, with index N the tuter" right one, 
with index i the 'inner" ones, with i=1,...,N-1, and then with index j the floor, it is easy to verify that at 
the j-th level the piers break from left side to the right one, till to the (N-j)-th position. On the other 
hand, for i=N-j+1,...,N the pier remain unbroken in that floor. 

AC xG 

 

fig. 9 fig.10 

In the fig. 10 it is possible to note that the mechanism at the j-th floor (except for the `outer" 
piers), can be considered as a sequence, from left side to right side, of kinematic schemes quite similar to 
the one shown in fig. 4. Thus, once a rotation cp*o, of the external left pier is assigned , it is possible 
calculate, starting from left side, the sequence of the rotations yki  and coti for all the blocks involved in 
the mechanism, as already explained in the prg.3. It is necessary to note that for i 5.N —j (broken pier) yii 
and or; represent the rotation of the lower part of the pier and that one of the block formed by the upper 
part of the pier and the adjacent panel (fig.11a). On the other hand, for i>N—j (unbroken pier) yi; and o 
represent the rotation of the pier and that one of the next panel (fig.11b). 

E 
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Moreover, it is quite obvious that this procedure can be applied only after a preliminary analysis of 
the mechanism at the j- 1 -th level, because the displacements uc  and vc  in fig.4 represent the 
displacements of the point C related with the point A. 

In order to improve the algorithm presented, it is useful to write: 

Ucij = - UEij-1 Vcij = - VEij-1 (22) 

where the point E is defined in the fig. 1 la or fig. 11b, depending on the kinematic scheme (pier broken 
or not). We have: 

case a) uE  = y (H-h)- coh+uA; vE  = y b- cob+vA; (23) 

case b) uE = y H+uA; VE = VA; (24) 

Once the rotations ON and yki, for i=1,...,N, have been calculated and written in the form: 

06= (P*oii:1*ki 76= -9*oi (25) 

we obtain the rotation yisti  which must be equal to the rotation yN,i because the `outer" left pier is 
unbroken all along the building (fig. 10). Then we can write the value of the rotation poi of the `outer" 
left pier at the j-th floor: 

(Poi = -Yrri (26) 

and the (25) can be written: 

(Or -7N1 I k*Nj q*6 Yu Ni / k*Ni (27) 

By applying this procedure, starting from the first to the last floor of a M-level building, we obtain 
the rotations (poi„ corresponding to the mechanism of the tutu" left pier, then the rotations oiki and 'hi, 
where i=1,...,N-1 and j=1,...,M, corresponding to the mechanism of the inner" part of the wall, and 
finally the rotation Ni  of the "outer" right pier. It is then possible to calculate easily the horizontal 
displacements U6 of the thrusts, the uplifting Vii  of the weights (displacements of the point G of fig.11) 
and finally the elongation of the tie bars. 
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